Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans.

Metabolism: clinical and experimental. 2021;121:154803

Plain language summary

Insulin resistance is a key pathophysiological mechanism in the development and progression of type 2 diabetes. Abnormalities in lipid metabolism and ectopic lipid accumulation are known to directly contribute to the onset of insulin resistance. Authors hypothesised that lipid infusion would increase dynamin related protein 1 [a type of protein]-mediated mitochondrial fission in skeletal muscle independent of function and content, consequently reducing peripheral insulin sensitivity. The study included sedentary but otherwise healthy adults who were prospectively randomized to receive either lipid or saline infusion to isolate the direct contribution of fatty acids to skeletal muscle mitochondrial dynamics. Results show that mitochondrial fission and quality control networks are activated in response to lipid infusion which occurs independent of changes in mitochondrial content or capacity and contributes to the onset of insulin resistance in healthy humans. Authors conclude that treatments that limit lipid-induced activation of mitochondrial fission and/or quality control processes may have therapeutic value in the treatment of insulin resistance.

Abstract

BACKGROUND AND AIMS A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. METHODS 19 healthy adults (age:28.4 ± 1.7 years; BMI:22.7 ± 0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. RESULTS Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). CONCLUSIONS These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. CLINICAL TRIAL REGISTRATION NCT02697201, ClinicalTrials.gov.

Lifestyle medicine

Fundamental Clinical Imbalances : Immune and inflammation ; Structural
Patient Centred Factors : Mediators/Insulin resistance
Environmental Inputs : Nutrients
Personal Lifestyle Factors : Nutrition ; Exercise and movement
Functional Laboratory Testing : Blood ; Tissue biopsy ; Imaging

Methodological quality

Jadad score : 4
Allocation concealment : Not applicable

Metadata